
Anatomy of a Wasm Runtime

$whoami
Hi! I’m Siddharth(siddharthtewari.me)
Currently a 4th year student at PESU-EC campus
Interested in backend engineering and all things systems
Love talking about all things Wasm and distributed systems
Aspiring audiophile
Reach out to me on twitter/x: @sidT_008

A small aside:
Wasm has its own semantics
For example traps in Wasm do not mean the
same thing as in say x86 or RISC-V.

So, what is WebAssembly?
Stack based Virtual Machine?
Binary format?
Assembly-like language?
A specification?
All of the above?

What is WasmEdge?
WasmEdge is a lightweight, high-performance,
and extensible WebAssembly runtime. It is the
fastest Wasm VM today.
WasmEdge is a sandbox project hosted by the
CNCF.
Use cases include modern web application
architectures, microservices on the edge cloud,
serverless SaaS APIs, embedded functions, smart
contracts, and much more

https://www.cncf.io/

Lets have a closer look now!

Encoding into the binary format:
Reference: https://webassembly.github.io/spec/
core/syntax/index.html
This is essentially the step where your code is
encoded into the Wasm Binary Format
The end product is a Wasm module. These are
the fundamental unit of deployment, loading,
and compilation.

Essentially an AST representation is created
initially and then serialised and validated.
If you’d like to see what a Wasm Module’s AST
looks like you can convert any Wasm
binary(.wasm file) into a .wat file(WebAssembly
Text format)
.wat files describe the AST in the form of S-
expressions.

A Closer look:
The AST can have multiple types of nodes.
Description nodes, instruction nodes, module
nodes, section nodes and more.
Module node embeds pretty much everything.
There’s various sections like the memory section,
table section, data section, global sections etc.
The encoding of a module starts with a 4-byte
magic number and a version field.

A Closer look:
The binary encoding of modules is organized into
sections.
Most sections correspond to one component of a
module record
The exception here is that Function definitions
are split into two sections, separating their type
declarations in the function section from their
bodies in the code section.

Source

https://kellnr.io/blog/wasm-compiler1#undefined

Source

https://kellnr.io/blog/wasm-compiler1#undefined

Each section consists of:
a one-byte section id
the size of the contents, in bytes
the actual contents, whose structure is dependent

 on the section id.

https://news.ycombinator.com/item?
id=33797615

https://news.ycombinator.com/item?id=33797615
https://news.ycombinator.com/item?id=33797615

Onto the runtime!

module Stages

Lets recap

The WasmEdge runtime follows a general flow:
parsing the Wasm file, validating the parsed
Wasm file, compiling the validated Wasm file into
native code, and then executing the compiled
code.

The stack and the store
The stack and the store are the two most
frequently interacted with components of the
runtime an instantiated module interacts with
We often say the stack is implicit, this is because
you never directly interact with it. It is used to
keep track of function calls and intermediate
results.

The stack has 3 kinds of entries:
Values: the operands of instructions.
Labels: active structured control instructions
that can be targeted by branches.
 Activations: the call frames of active function
calls.

What goes into the stack?
Activation frames/Call frames are structures that
represents the state of an active function call.
A frame is created each time a function is called
and is removed when the function returns.
Important for control flow integrity.
hold the values of its locals (including fn
arguments) in the order corresponding to their
static local indexing + a reference to the
function’s own module instance

Stack manager internally provides the stack
control for Wasm execution with validated
modules. All operations of the instructions have
already passed validation and no unexpected
operations will occur.
This is an implicit stack! We cannot directly
modify this stack, we can interact with it with
instructions. This ensures CFI(control flow
integrity)

Store Manager

The store manager serves as a centralized class
for the WebAssembly instance’s state, managing
the linear memory, global variables, tables, and
function references.
New instances of functions, tables, memories,
and globals are allocated in the store where it is
kept track of.

Store Manager

Linear Memory Model

Linear memory? Its exactly what it sounds like.
Its represented as just a vector of raw bytes.
Its represented in terms of page size(the min/max
possible size)
Each module is given its own linear memory. You
can exchange data between modules through
host functions.

Traps

Traps in Wasm are pretty much generated
whenever there is a out of bounds access or a
type overflow, there’s a non exhaustive list of
cases
But point being, whenever a trap is generated it is
not handled by the Wasm runtime, trap handling
is passed off to the host embedding.
(My job is to implement the coredump spec for
the WasmEdge runtime)

Why I love Wasm

https://fuglede.github.io/llama.ttf/

https://dingboard.com

https://wingolog.org/
archives/2024/01/08/
missing-the-point-of-
webassembly

https://dingboard.com/
https://wingolog.org/archives/2024/01/08/missing-the-point-of-webassembly
https://wingolog.org/archives/2024/01/08/missing-the-point-of-webassembly
https://wingolog.org/archives/2024/01/08/missing-the-point-of-webassembly
https://wingolog.org/archives/2024/01/08/missing-the-point-of-webassembly

“WebAssembly is a new fundamental abstraction
boundary. WebAssembly is a new way of dividing
computing systems into pieces and of composing

systems from parts.”

WASI’s latest preview
WasmEdge Plugin system
The Wasm GC proposal
This article: https://wingolog.org/
archives/2023/11/24/tree-shaking-the-
horticulturally-misguided-algorithm

Other things you should check out:

Fin

